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Denoising with a neural network

•E.g. an MLP with two hidden layers:

f (x) = b3 + W3 tanh(b2 + W2 tanh(b1 + W1x)),

x is the noisy patch, f (x) is the denoised patch.

•Training via stochastic gradient descent on clean/noisy
patch pairs (generated on the fly).

State-of-the-art results are possible with:

1. Large variability in training data (S: 200, L: 150000 images)

2. Large patch sizes (13x13, 17x17)

3. High capacity MLPs (hidden layers: 4x2047, 2x2047, 2x511)

4. Long training times (more than 108 backprops)
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progress during training (AWG noise, σ=25)
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•Computationally feasible through GPUs.

•No overfitting due to abundance of data.
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noisy: 20.16dB BM3D: 29.65dB our result: 30.03dB
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noisy: 20.19dB BM3D: 30.67dB our result: 29.21dB

net: L-17-4x2047

Neural networks can be trained on other types of noise

“stripe” noise: 20.23dB salt and pepper noise: 12.39dB JPEG quantization: 27.33dB

our result: 30.09dB our result: 34.50dB our result: 28.97dB

Results 2: Comparison against other algorithms.

image GSM [3] KSVD [1] BM3D [2] us

Cameraman 28.66 28.71 29.40 29.43
Peppers 29.50 29.66 30.19 30.28
Lena 31.27 31.30 32.05 32.12
Boats 29.25 29.28 29.85 29.84
Barbara 27.83 29.50 30.66 29.21

σ = 25. Red is best, blue is the runner-up.

Results 3: Performance profile.
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results compared to BM3D (AWG noise, σ=25)
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Can we understand how the MLP works?

some input layer weights:

some output layer weights:

Limitations:
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behavior at different noise levels

 

 
BM3D

us, trained on several noise levels

GSM
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BM3D, assuming σ = 25

us, trained on σ = 25

Average results obtained on images “Lena” and “Barbara”.


